

2010 Thermal & Fluids Analysis Workshop Methodology for the Assessment of 3D Conduction Effects In an Aerothermal Wind Tunnel Test

August 17, 2010

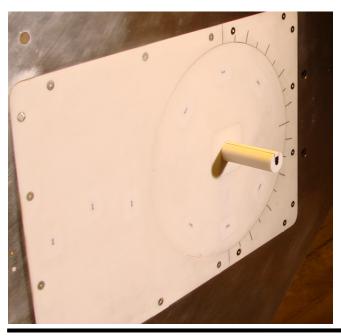
A. Brandon Oliver brandon.oliver-1@nasa.gov

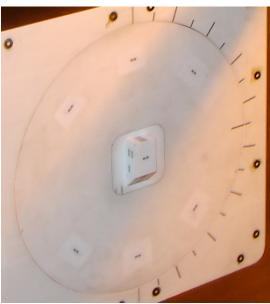
EG3: Applied Aeroscience and CFD Branch National Aeronautics & Space Administration Lyndon B. Johnson Space Center Houston, TX 77058

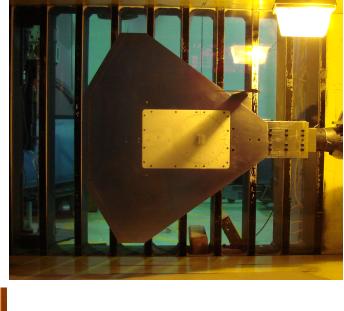
Outline

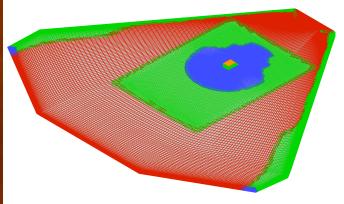
- Problem
- Solution
- Results

Protuberance Heating Test (2007-Present)




Test objectives:

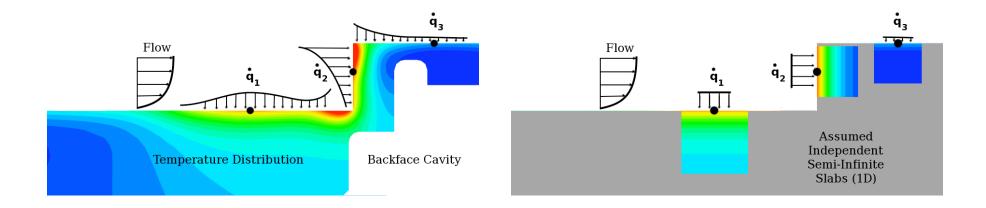

- Duplicate and extend 60's era test which is used for ET protuberance environments
- Obtain heating data useful for CFD model validation


Models:

- 11 different models of two-sided protuberances on a flat plate
- Protuberances mounted on a turn-table to permit varying crossflow angle
- Instrumented with thin-film gages and pressure taps (4 models)

Possibly relevant test background

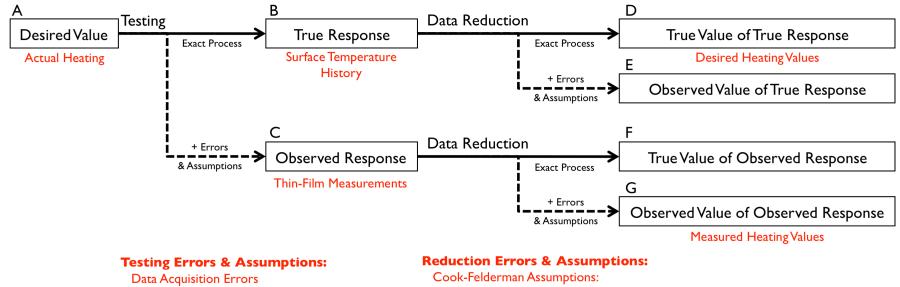
Run method:


- Model run in tunnel until temperatures come to a steady state (near adiabatic conditions)
- Data acquisition begins
- Heat pulse generated by bypassing a cooling unit in the tunnel circuit
- Heat pulse drives heating which is measured by thin film gages
- Heat pulse character a function of Mach number...development time varies from 5-12 seconds...run times vary from 20-35 seconds
- Low thermal driving potential makes knowing the recovery factor important

1D vs. 3D Conduction Data Reduction Error

- Extended run times of LaRC UPWT test method, along with small model size, permits heat to conduct farther and deeper into the model than in traditional aerothermal test facilities
 - Thin-film reduction method assumes 1D conduction into semi-infinite slab
 - Actual test article has 3D geometric features and strong heating gradients

- Goal of present effort:
 - Identify protuberances and gages susceptible to this reduction error
 - Develop a process to quantify this error so that corrections may be applied



Analysis Process

Generic Testing and Reduction Process

With Specific Application to Thin-Film Measurement Technique

Data Acquisition Errors
Gage Interference

ID semi-infinite solid

Constant material properties

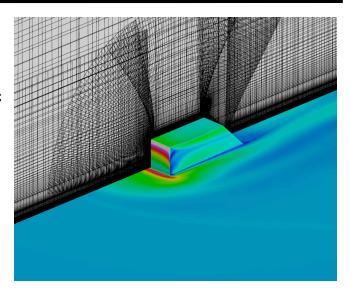
Constant heat transfer coefficient

Data Filtering

Measurement Errors in Freestream Conditions Used In Reduction

- "3D conduction errors" are a data reduction error
- Have assessed conduction error using two different methods for defining the analytical 'actual' heating
 - CFD Brandon Oliver, JSC
 - Wind tunnel data correlations Dr. Keith Woodbury, University of Alabama

CFD-Based Analysis Overview

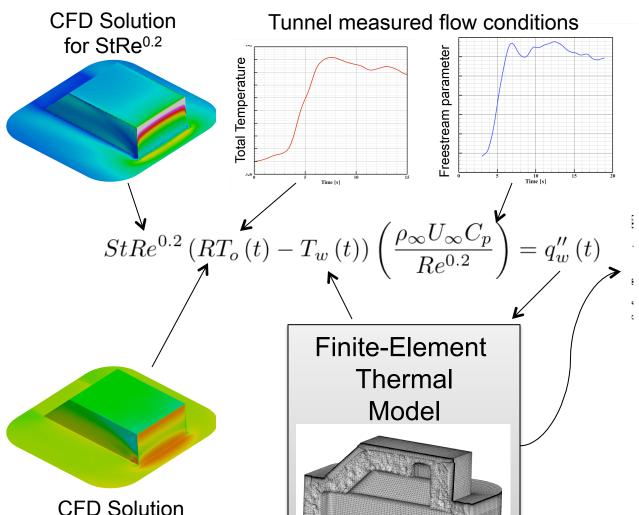


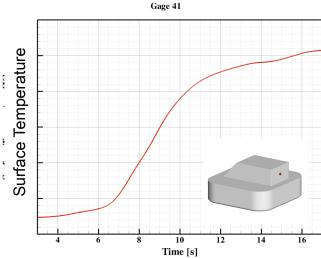
Compressible Navier-Stokes CFD (OVERFLOW)

- · Build grid
- Run solution at nominal pre-heat pulse freestream with adiabatic wall BCs to obtain recovery factor
- Re-converge solution with specified wall temperature BCs to obtain heat flux
- Combine results to obtain heat transfer coefficient distribution

Finite-Element Thermal Model (FIN-S)

- · Build grid
- Interpolate CFD recovery factor and heat transfer coefficient to thermal grid
- Run thermal model to steady state with pre-heat pulse total temperature to obtain initial thermal state
- Run heat pulse profile (taken from wind tunnel run data) to obtain surface temperature vs. time
- Process simulated surface temperature trace using Cook-Felderman
- Compare Cook-Felderman heating value (1D) with known, applied heating value (3D)

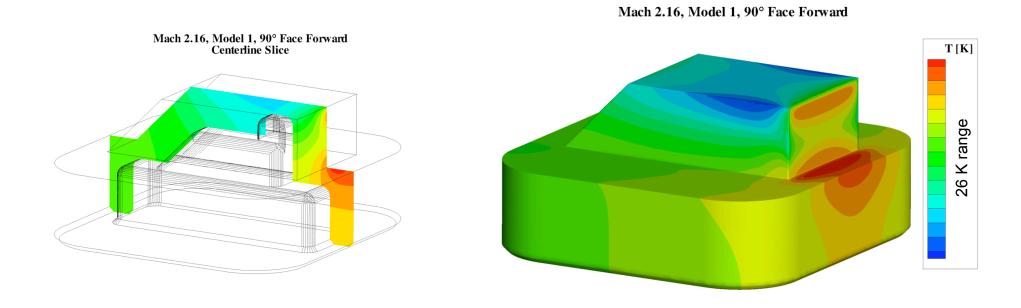




Code and Data Loose Coupling Method To Simulate a Wind Tunnel Run

Simulated surface temperature history

- Thermal model yields surface temperature vs. time
 - Treat as 'simulated data'


for recovery factor

Compute "Adiabatic" Solution

Thermal solver is run to steady-state with the pre-heat pulse total temperature

Yields the temperature distribution during the 'adiabatic' portion of the run

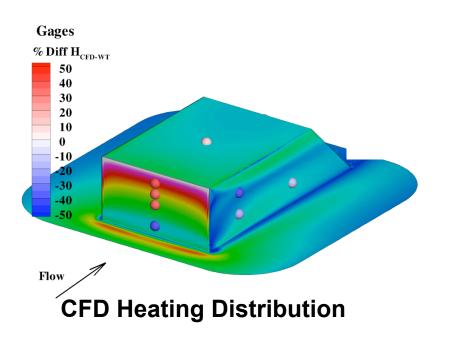
Apply 1-D Reduction to Simulated Data

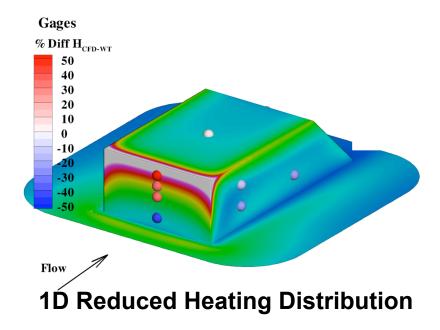
 Apply the Cook-Felderman reduction to the simulated temperature trace provided by thermal model

- This "1-D conduction" result is equivalent to the measured thin-film results
- Compute error using heat transfer coefficient instead of heat flux
 - Adiabatic wall temperature error scales out a good portion of the heat flux error

1D Reduction Error [%] =
$$100 \cdot \frac{H_{Cook-Felderman} - H_{3D}}{H_{3D}}$$

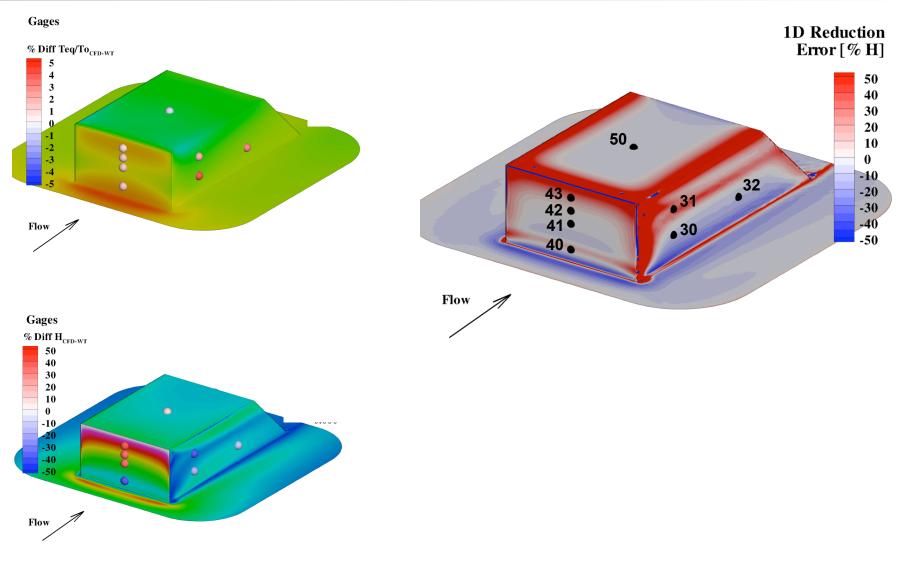
Positive error: Test over-predicts actual heating




Model 1, CFANGLE 180, Mach 1.50, No Turntable

3D conduction effects:

- Higher 'observed' heating near corners
- Washes out localized flow patterns
 - Cool streak on side of protuberance
 - Peak heating ahead of protuberance
- Lower 'observed' heating near the base of the protuberance

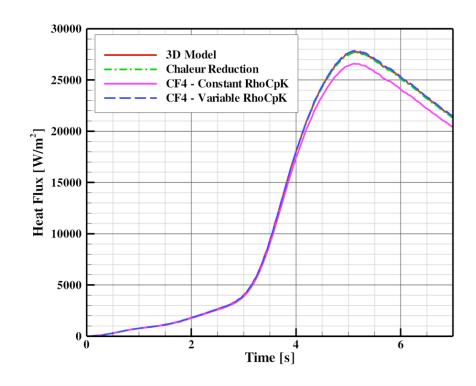


Model 1, CFANGLE 180, Mach 1.50, No Turntable

Solution Verification

- Thermal model timestep convergence verified adequate (Δt=0.05s)
- Thermal model grid convergence
 - · Wall spacing and wall stretching ratio studied using flat plate with a peak heating heat transfer coefficient applied
 - Models 10 & 11, Mach 1.50 runs with doubled grid resolution in all directions in the near-wall structured zones
 - Model 9 & 10, Mach 2.16 compare qualitatively well with previous (much finer) grids
 - Model 1 without turntable grid independence established for several surface and in-depth grid distributions
- CFD grid convergence
 - Models 1 and 9, Mach 1.5 run with refined grids
 - Small differences were observed
 - Details in documentation
- New CFD solutions generated with better wall spacing, but could still use work
 - · Several previous protuberance solutions did not meet best practices standards for wall spacing
 - Fine-spacing has introduced some noise into solutions

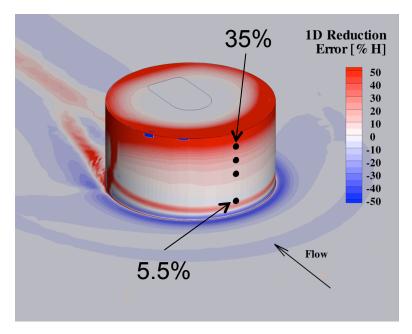
Grid Convergence


Verified wall spacing with semi-infinite slab model

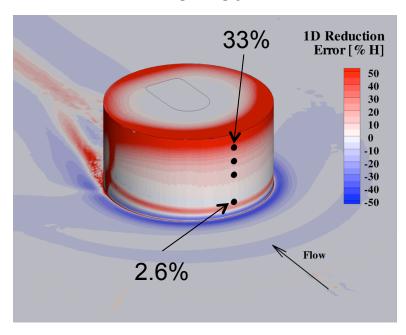
- · Applied peak protuberance heating uniformly to flat plate
- Ran through a Mach 1.5 heat pulse
- Identified that wall spacing of 0.001" provided grid independent 1D reduction error level

Flat plate solutions indicated -5% error due to constant material property assumption

 Verified with variable material property reduction using Chaleur & modified C-F to use temperature-dependent material properties



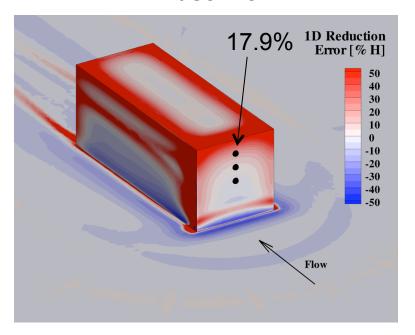
Grid Convergence



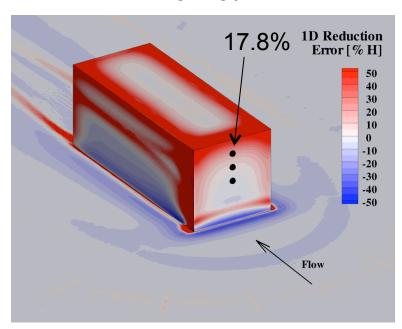
- Model 10, Mach 1.50
- Grid resolution refined in all directions in the near-wall structured zones

Baseline

Refined



Grid Convergence



- Model 11, Mach 1.50
- Grid resolution refined in all directions in the near-wall structured zones

Baseline

Refined

Mach Number Trend

- Flow conditions favor higher dimensional heat flux for lower Mach numbers, leading to trend of decreasing error with Mach
- Extended time of test section 2 heat pulse causes increase in errors for Mach 3.51 runs (20 sec vs 10 sec)

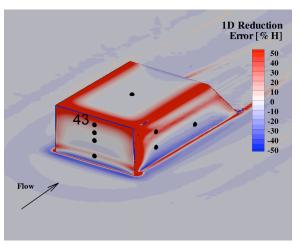
Gage 43: 27% Gage 45: -2.3%

Gage 43: 12% Gage 45: -1.3%

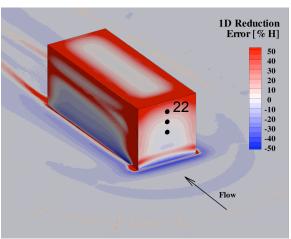
Gage 43: 20% Gage 45: 1.1%

Trend consistent on Models 9 & 10

Size Trends


- Errors remain concentrated at corners
- Lower heating on shorter protuberance does not reduce percent error

Model 4


1D Reduction Error [% H]

50
40
30
20
10
0
-10
-20
-30
-40
-50

Model 1

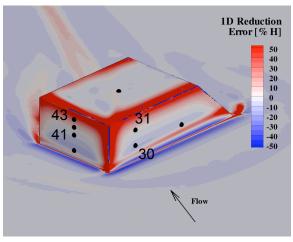
Model 11

Highest Face Gage H ~ 23% Model 1 Error: 39%

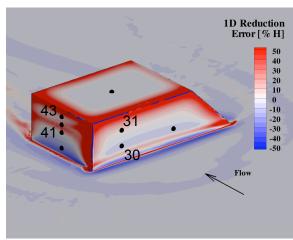
Highest Face Gage H = Model 1 Error: 22%

Highest Face Gage H ~ 102% Model 1 Error: 18%

Model 1 Cross Flow


- Cross flow does not significantly alter extent of errors from corners
- May not have to analyze all runs to determine correction factors

CFANGLE 180


1D Reduction Error [% H]

50
40
30
20
10
0
-10
-20
-30
-40
-50

CFANGLE 120

CFANGLE 90

Gage 30: -7.6%

Gage 31: 26%

Gage 41: -2.6%

Gage 43: 22%

Gage 30: -8.6%

Gage 31: 3.2%

Gage 41: -3.2%

Gage 43: 32%

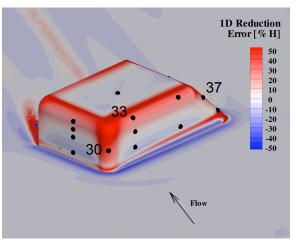
Gage 30: -8.5%

Gage 31: 5.1%

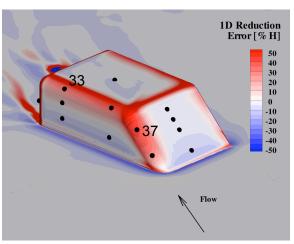
Gage 41: 9.0%

Gage 43: 14%

Model 6 Corner Gages


- Corner gages strongly affected by 3D effects
- Currently working to assess if improved heat flux numbers can be obtained by using cylindrical coordinates in corner thin-film reduction

CFANGLE 180


1D Reduction Error [% H]

50
40
30
20
10
-10
-20
-30
-40
-50

CFANGLE 120

CFANGLE 30

Gage 30: 25%

Gage 33: 30%

Gage 30: 40%

Gage 33: 31%

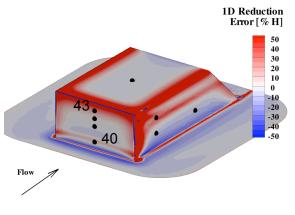
Gage 37: 25%

Gage 33: 32%

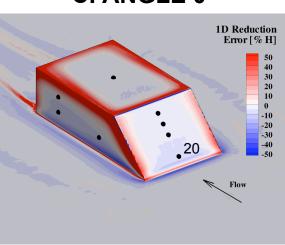
Gage 37: 41%

Don't forget: Red contours indicate tunnel data is over-conservative

Model 1 Peer Review Requests


- Turntable has negligible effect on model error
- 45 degree sloped face shows less error than 90 degree face

With Turntable


1D Reduction Error [% H]

50
40
30
20
10
0
-10
-20
-30
-40
-50

Without Turntable

CFANGLE 0

Gage 43: 22%

Gage 40: 10.44%

Gage 43: 22%

Gage 40: 10.39%

Gage 20: -6.9%

Cylinder vs. Block Protuberances


- Cylindrical protuberances show slight error due to surface curvature
 - Could be fixed by computing 1D solution in radial coordinates
- Similar sensitivity to top surface in the vicinity of the corner

Model 1


1D Reduction Error [% H]

50
40
30
20
10
0
-10
-20
-30
-40
-50

Model 9

Model 10

Gage 43: 22%

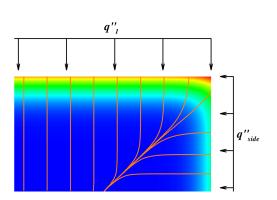
Gage 40: 10.44%

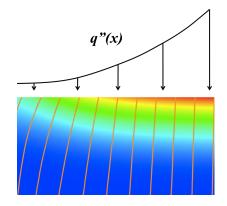
Gage 23: 5.0%

Gage 20: 5.9%

Gage 23: 5.5%

Gage 20: 35%




CFD Conduction Analysis Summary

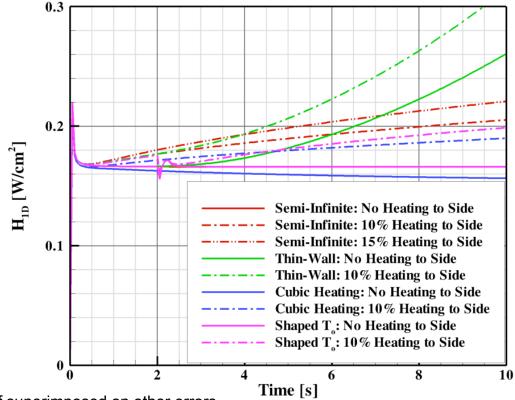
Trends in 1D/3D conduction data reduction error are identified

- Errors are typically overprediction errors
- Errors could be as significant as 40% for some isolated gages
- Primary conduction mode seems to be influence of 'sides' of otherwise 1D surfaces
 - Localized heating features are present, but more difficult to define and are much more dependent on features generated by un-validated CFD turbulence models

Limitations

- Since the 'applied' heating is based on un-validated CFD, it is possible that turbulence model failings are causing an overstatement of the data reduction error
- If 'correction factors' are computed based on this work, the 'fixed' data could not be technically used for CFD validation since CFD defined the corrections

Unit Problems

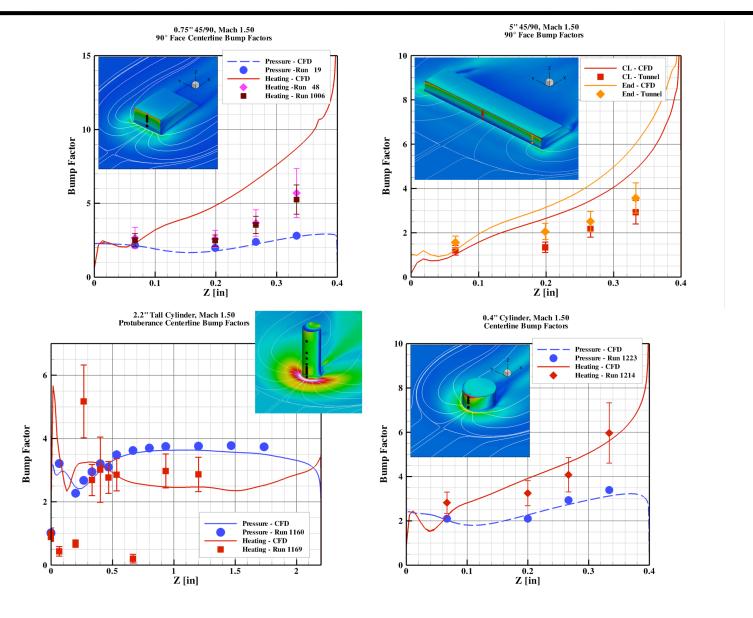

- Investigating various conduction loss modes with a 2D flat plate
- Thin wall (backface temp rise)
 - 1D reduction yields accurate answer for short period, then overprediction error rapidly grows

Non-uniform (cubic) heating

On higher heating side of profile,
 1D reduction yields underprediction that slowly grows in time

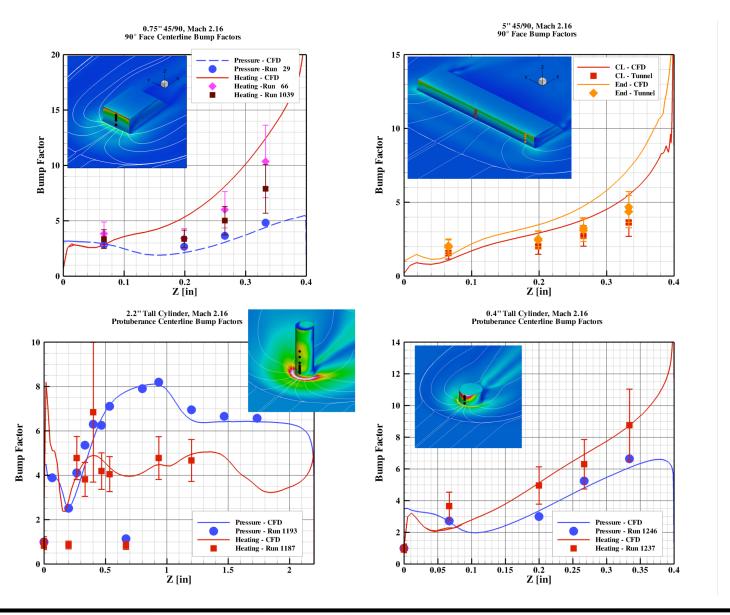
Side heating

- Overprediction error begins very early and grows nearly linearly with time
- When combined with other modes, behaves as if superimposed on other errors


Shaped T₀

- Small increase in total temperature for first 2 seconds, then up to same level as previous
- Increase in heat flux at 2 seconds overpowers previous errors for a brief time, but then errors trend to values without slow start

Comparisons to Pretest CFD – Mach 1.5



Comparisons to Pretest CFD – Mach 2.16

Picking Up the Pieces...

- The conduction data reduction error is significant, but does not invalidate this dataset
 - Significant errors are constrained to known gages near sharp changes in geometry
 - Errors tend to be conservative for typical peak-heating gages
 - Correlations which combine the inputs of many gages tends to reduce the influence of errors in a single gages
 - Methods exist and are in development which can provide quantitative estimates of the bias error which can be removed from the data
- The conduction issue complicates the use of the raw data for model validation
 - 'Corrected' data is only as good as the correction applied
 - Other methods exist for getting the data and model data on similar terms for comparison

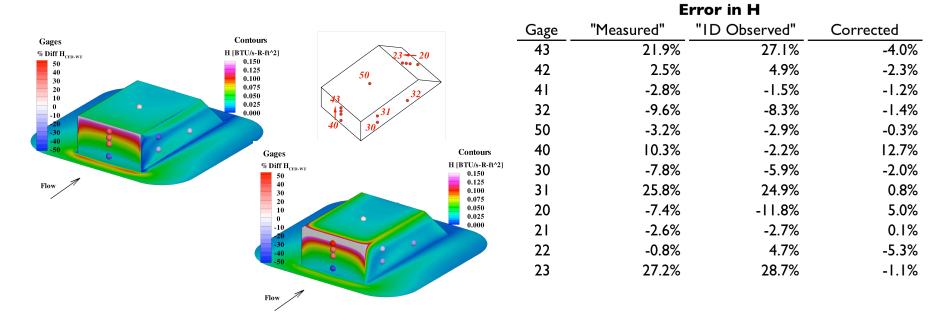
Correction Factors

Error in Observed H

Compute a correction factor based on observed reduction error:

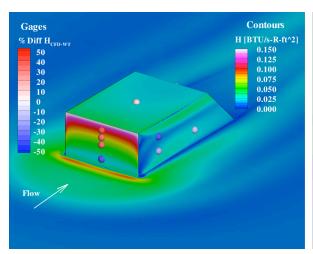
$$Correction Factor = \frac{Applied Heating}{Observed 1D Heating}$$

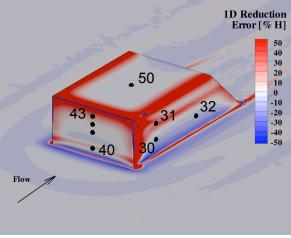
- Assumes that error is relatively insensitive to the specific heating levels applied
- Can check the 'fixed' heating levels by running thermal model and determining if original observation is recovered with the 1D assumption
- Using tunnel-data as initial 'Applied' heating yielded good results on 90° face, but fell short where less spatial fidelity was built into boundary conditions


Gage Original BCs Updated BCs Wind Tunnel Correlation Heat Transfer Coefficient 27.7% 0.4% *Corrected Heating 42 11.5% 3.8% —Curvefit of Corrected Heating 41 7.3% 7.2% -7.4% 0.8% 40 31 15.3% 16.9% 50 -7.5% 3.9% 30 0.8% 10.8% 32 -1.3% 7.5% 5.5% 23.0% 23 13.1% 22 -1.9% 21 -3.2% 9.7% -3.7% 5.0% 20 0.00 0.05 0.10 0.25 0.30 0.35 Z/S Thermal analysis based on tunnel data

Correction Factors

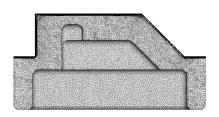
- Using CFD distributions to test the 'Correction Factor' approach yielded better results, but the answer is not perfect
 - CFD distribution taken as the true applied heating
 - A 3D thermal analysis yielded a set of 'Measured' observations which parallel the thin-film gage measurements
 - Distributions based on the 'Measured' values used to drive a 3D thermal analysis and obtain the '1D Observed' results
 - Comparison between the '1D Observed' and 'Measured' yield a correction factor
 - · Correction factor applied to 'Measured' values to yield the corrected estimate of the true heating



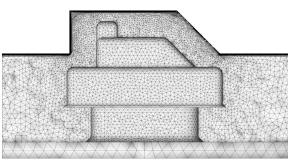


Correction Factors

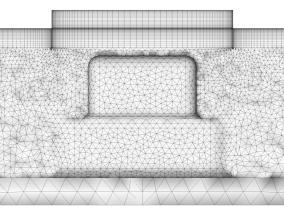
- A simplified method is being developed which uses analytical solutions of the multi-dimensional heat equation to rapidly generate approximate correction factors without the need for CFD or FE thermal analysis
 - Based solely on the 'heating to side' mode of 3D conduction
 - Use will be for determining first-order estimate of conduction error
 - Presently includes significant assumptions that eliminate the model for use in correcting data for high-fidelity validation
 - Work is presently directed at adding ability to better represent underprediction estimates due to heat lost to the plate

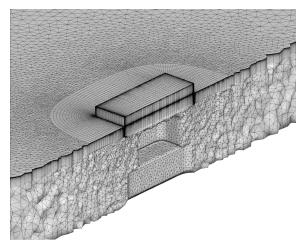

Gage	CFD	Model	Delta
30	1.09	1.05	-0.03
31	0.75	0.91	-0.17
32	1.10	1.05	-0.05
40	0.91	1.19	-0.28
41	1.04	1.00	-0.04
42	0.98	0.95	0.04
43	0.79	0.84	-0.05
50	1.04	1.00	-0.04

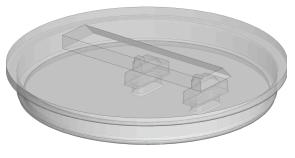
Model 1 without turntable: 1.2 million nodes

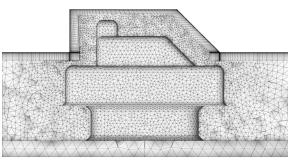


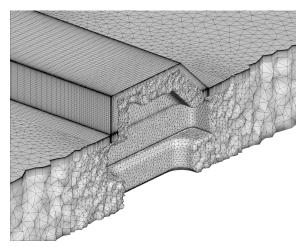
Model 1 with turntable: 1.3 million nodes



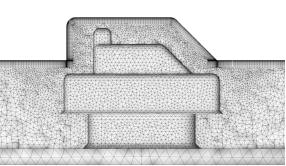


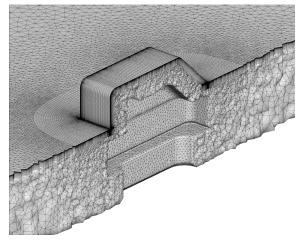

Model 4: 0.95 million nodes



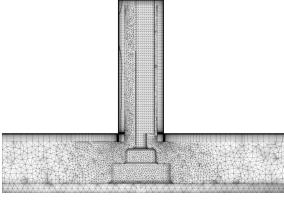


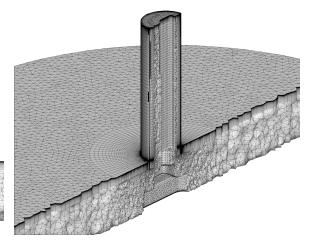
Model 5: 1.2 million nodes



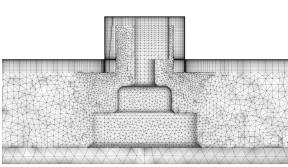


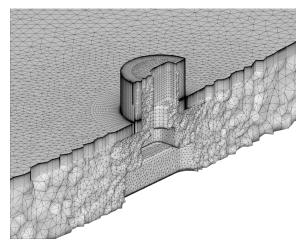
Model 6: 1.4 million nodes



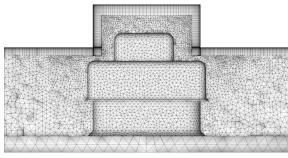


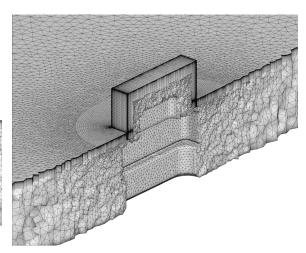
Model 9: 0.67 million nodes





Model 10: 0.52 million nodes





Model 11: 0.89 million nodes

